Projects

SIG – Engineering and Archaeology

We are forming a new interest group at the Innovation Wing, as a collaboration with humanities and educational researchers at HKU.

In this group, we plan to pursue several interdisciplinary projects that will improve the ways we can study and teach about the human past. Our projects will include uses of augmented and virtual reality in recording, teaching, and presenting archaeological sites. We are also studying the use of machine learning and computer vision for several purposes to study visual datasets such as satellite images of ancient landscapes. We work with a field project that travels to Armenia each summer to excavate. We welcome anyone who would like to join our team, from any Faculty. We especially invite engineers and computer scientists, but we also have many other projects which anyone with an interest can join.

Let’s learn about the human past together! Thank you!

BREED Robotics 2020

BREED is a student group committed to developing and promoting bio-inspired technology. Our flagship VAYU project – the world’s fastest robotic fish – and our upcoming initiatives such as our robotic dog aim to educate and enhance awareness in the general student body. Using designs perfected by millions of years of natural evolution, we adapt selected features into increasing effectiveness of man-made robots. We aim to establish a hub based in the Innovation Wing where this development can take root in the local community, increasing awareness and interest while promoting scientific innovation: this will be done through outreach projects, educational initiatives, as well as the continuation of various bio-inspired initiatives under BREED.

SIG – HKU Robocon

The annual Robocon competition project allows HKU engineering students from different disciplines to design and fabricate innovative robots with an integration of various advanced technologies, including IoT sensors, AI, computer vision, and mobile computing. Besides, it provides hands-on experiences on product design, prototyping, CNC machining, design and fabrication of electric circuit and PCB, control program development, etc.

HKU Robocon 2022

The annual Robocon competition project allows HKU engineering students from different disciplines to design and fabricate innovative robots with an integration of various advanced technologies, including IoT sensors, AI, computer vision, and mobile computing. Besides, it provides hands-on experiences on product design, prototyping, CNC machining, design and fabrication of electric circuit and PCB, control program development, etc.

SIG – PERfECT Wearables for Digital Health

Internet of things (IoT) has attracted huge attention because of its potential to connect things together with the cloud. Similarly, the Internet of Health (IoH) aims to enable real-time health evaluation of an individual or a group with advanced medical devices. This feat can be realized by developing tiny wearable biosensors that can be easily deployed on the human body to monitor health signals. This project develops next-generation wearable biosensors to allow digital healthcare. There are two main components. First, we develop skin-attachable biosensors which detect health signals including electrophysiological signals, temperature, and antibodies or glucose in the sweat. Second, we develop miniaturized sensor characterization systems to enable comfort wear for practical applications. The whole set can communicate the data wirelessly with other electronic devices. This will be one of the smallest wearable devices developed so far. Future research is being conducted by our group at the innovation wing now at HKU.

SIG – Quantum Education Society

The world is currently in the midst of a second-quantum revolution, which will see the counter intuitive properties of quantum systems such as superposition and entanglement, being applied for commercial technologies such as quantum computing, quantum sensing, and quantum communications. Quantum Computing is mostly taught to undergraduates in a classroom focusing mostly on theoretical and mathematical concepts with minimal laboratory components. This is primarily because research laboratories working in quantum science are too expensive, bulky, and complicated to be used for undergraduate teaching purposes. We wish to bridge that gap by building a compact, user-friendly, interactive setup to introduce quantum physics to a younger non-expert audience. The goal of the project is to create a curriculum for quantum technology, a sustainable education model, with an in-class demonstration kit for quantum science education.

SIG – BREED Robotics

BREED is a student group committed to developing and promoting bio-inspired technology. Our flagship VAYU project – the world’s fastest robotic fish – and our upcoming initiatives such as our robotic dog aim to educate and enhance awareness in the general student body. Using designs perfected by millions of years of natural evolution, we adapt selected features into increasing effectiveness of man-made robots. We aim to establish a hub based in the Innovation Wing where this development can take root in the local community, increasing awareness and interest while promoting scientific innovation: this will be done through outreach projects, educational initiatives, as well as the continuation of various bio-inspired initiatives under BREED.

SIG – Smart Buildings and application of IoT

Internet of Things (IoT) is a system that connects sensors, machines, computing devices, etc. together to collect data without much human involvement. IoT allows a very massive amount of data to be collected, which were not available in the past. The data collected can then be used to enhance operation efficiency and performance of a system. The system then becomes “smart” in the sense that the system can now make decisions that are more optimized and intelligent without much human interaction. A home/building/city becomes smart when IoT is adopted in its maintenance and daily operations. IoT and smart city are still in infancies that there are not many real implementations. A complete IoT application consists of various components including sensors, power electronics, information processing, communication network, data analytics, data visualization, and data security etc. A lot of projects can be developed from these elements to provide experiential learning to our students.

SIG – HKU Astar (formerly RoboMaster ICRA AI Challenge)

HKU Astar is a student interest group focused on research and development in the combination of Robotics and AI algorithms. It collaborates with HKU RoboMaster in RoboMaster university competition series hosted by DJI, responsible for the mechanical and embedded systems design of some robots and the development of vision, localization, navigation, and decision-making systems applied to the fully automatic sentry robot and the Radar. Starting from next semester, the team will participate individually in other AI-related competitions, such as the Intelligent UAV Championship currently held by DJI. For the UAV Championship, the team will work on the localization, navigation, and motion planning of a drone to make it fly swiftly and smoothly through objective rings, as well as avoid stationary or moving obstacles in a complicated environment.

SIG – HKU RoboMaster

Robomaster is a national robotics competition for university students, hosted by DJI. The project is about forming a team to design various types of smart robots which can engage in face-to-face, videogame-style battles. The preparation process involves the knowledge in the following disciplines: mechanical and hardware design, control theory application, computer vision and smart algorithm, technical management. The ultimate purpose of the project is to develop the skills, quality and team spirit of engineering students that can be beneficial in their future career.