October 2023

TechTalk – Waste to Wealth: Sustainable Land Reclamation Technologies

November 16 2023 (Thursday) 3:00-4:00pm
Land reclamation is one of the most effective solutions to address the severe problem of land shortage. By 2023, the total reclaimed area in Hong Kong is nearly equivalent to the whole area of Hong Kong Island. In Lantau Tomorrow Vision, there will be over 1700 hectares of new reclaimed land in the next 20-30 years, in which, the shortage of fill material will be a great challenge. Dredged marine deposits as a major solid waste are a potential fill material after stabilization. Chemically, waste ashes from industry were recycled, activated, and mixed with marine deposits to serve as fill material. The other biological method is also used, in which bacteria are adapted to induce calcium carbonate in marine deposits. The environmental impact and performance of the methods are evaluated. Without using cement, these green technologies could reduce carbon emissions, contributing to carbon neutrality, and promoting green and sustainable reclamation.

Self-powered Multimodal Smart Skin Enabled by Triboelectricity and Hygroelectricity

Tactile e-skins mimicking functions of human skin can sense tactile modalities such as pressure, vibration, temperature, and humidity. They are essential components for smart robotics, health monitoring devices and human–machine interfaces.
However, complicated materials, sophisticated manufacturing, device integration and external power sources are required for most of existing multi-functional e-skins, which severely limit their widespread use.

HKAES TechTalk – Fluid Mechanics for Carbon Reduction in Wastewater Treatment Plants –

November 2 2023 (Thursday) 4-5pm
The Hong Kong Harbour Area Treatment Scheme (HATS) serves a population of over 5 million. It ensures protection of the Tsuen Wan beaches and good water quality in Victoria Harbour. In the Stonecutters Island treatment works, 300 tonnes of 10 percent sodium hypochlorite solution (6 L/s) are dosed into a river of sewage (1.8 million m3/d) every day. In actual operation it is found that most of the chlorine is actually consumed without being used for disinfection. This talk presents an engineering innovation on how to mix the small chlorine dose with the large sewage flow, resulting in up to 30 percent reduction of chlorine demand – with significant savings of chemicals and reduction of carbon footprint of 1170 tonnes/year. The technology is generally applicable to chlorine disinfection of primary effluent in many developing countries.