Innovation Wing Two

Soft Robotic Manipulator for Intra-operative MRI-guided Transoral Laser Microsurgery

Magnetic resonance (MR) imaging (MRI) provides compelling features for the guidance of interventional procedures, including high-contrast soft tissue imaging, detailed visualization of physiological changes, and thermometry. Laser-based tumor ablation stands to benefit greatly from MRI guidance because 3D resection margins alongside thermal distributions can be evaluated in real time to protect critical structures while ensuring adequate resection margins. However, few studies have investigated the use of projection-based lasers like those for transoral laser microsurgery, potentially because dexterous laser steering is required at the ablation site, raising substantial challenges in the confined MRI bore and its strong magnetic field. Here, we propose an MR-safe soft robotic system for MRI-guided transoral laser microsurgery. Owing to its miniature size (Ø12 × 100 mm), inherent compliance, and five degrees of freedom, the soft robot ensures zero electromagnetic interference with MRI and enables safe and dexterous operation within the confined oral and pharyngeal cavities. The laser manipulator is rapidly fabricated with hybrid soft and hard structures and is powered by microvolume (<0.004 milliter) fluid flow to enable laser steering with enhanced stiffness and lowered hysteresis. A learning-based controller accommodates the inherent nonlinear robot actuation, which was validated with laser path-following tests. Submillimeter laser steering accuracy was demonstrated with a mean error < 0.20 mm. MRI compatibility testing demonstrated zero observable image artifacts during robot operation. Ex vivo tissue ablation and a cadaveric head-and-neck trial were carried out under MRI, where we employed MR thermometry to monitor the tissue ablation margin and thermal diffusion intraoperatively.

Tech Talk – Engineering of quantum nanodiamonds

Diamond, the most famed of all gemstones, is unique in many ways. However, beyond the sparkle, diamonds have many unique properties for copious applications. In particular, nanoscale diamond particles, generally known as nanodiamonds (NDs), have several outstanding material qualities, offering a wide range of potential for basic science and industrial applications. The practical applications of the quantum NDs are highly dependent on obtaining a well-defined surface through cleaning. Here, this talk will first present a simple, reliable, and reproducible purification method, namely, the salt-assisted air oxidation treatment, which enables scale-up manufacturing of clean NDs. At the same time, it is discovered that NDs could work as an effective agent against oral infections. These findings will significantly enhance the scope of these little gemstones in diverse scientific and industrial fields, particularly in demanding areas such as biomedical and quantum sensing.

Tech Talk – Re-understanding of Active Volcanoes

The conventional understanding of active volcanoes is based on the theory of hot magma (molten rock) from mantle. Although this magma theory has been widely believed in Earth Science, the prediction of volcano eruption can be incorrect. For example, the recent massive eruption of the Tonga Hunga volcano was not predicted. The devastating eruption of the Mount Ontake volcano in Japan on Sept. 27, 2014 was also not predicted and/or warned at all, consequently caused 55 fatalities, 9 missing and more than 60 injured.

In this Tech Talk, Professor Yue will present his re-understanding of active volcanoes using his methane gas theory. This methane gas theory of active volcanoes is original and can interpret all the observed phenomena associated with active volcanoes. It can be used to correctly predict and effectively reduce the occurrence of damaging volcano eruptions. It can be further used to obtain the huge amount of natural gas resources from gas chambers of active volcanoes at several kilometers below the ground rocks

Anti-COVID-19 stainless steel

Stainless steel (SS) is one of the most extensively used materials in public areas and hygiene facilities but has no inherent antimicrobial properties. Additionally, SARS-CoV-2 exhibits strong stability on regular SS surfaces, with viable viruses detected even after three days. This has created a high possibility of virus transmission among people using these areas and facilities.

Tech Talk – Unravelling the transmission of vertical outbreaks: Each drainage stack is an aerosol factory

More than 10 vertical outbreaks of COVID-19 have been observed in high-rise housing in Hong Kong. Together with the 2003 SARS Amoy Garden outbreak, these outbreaks suggest the roles of building drainage pipes in the transmission of infection, probably not limited to SARS and SARS-CoV-2. In collaboration with the Environmental Protection Department (EPD), we conducted field measurements in some of the infection venues and explore the transmission mechanisms. In this Tech talk, Professor Yuguo Li, Chair Professor of Building Environment, shall demonstrate how his proposed chimney effect explains most of these infections, how the drainage pipe was poorly ventilated, what one can do to protect our family, and what society can do to provide healthy housing. 

Inaugural Tech Talk – DIGITIZATION

The Managing Directors of two Health@InnoHK and AIR@InnoHK projects at the Faculty of Engineering, Professor Anderson Shum and Professor Norman C. Tien gave the Inaugural Tech Talk with the theme “Digitization” and introduced insightful research projects and their future development plan.

Digitisation of Human Body Motion for Garment Production

Garment production is a laborious process that relies primarily on manual operations. Smart robots are set to play a vital role in future automations and assist human workers with repetitive and/or high-risk tasks. To achieve interactive human-robot collaborations, robots need to learn and understand how humans work and thus a cost-effective means of digitising manual operations is of the essence. In this project, we aim at developing an innovative approach to high-fidelity, real-time full-body motion capture for garment workers without using specialty cameras.

Detection and Diagnostics of Airborne Viruses

A lot of diseases can be transmitted via airborne agents, such as viruses spreading through droplets. The concentrations of these airborne agents are usually too low in the environment and it has created difficulties for the current detection instruments available in the market. We aim to fill this gap by developing new technologies to enhance detection and diagnostics of airborne viruses.