TechTalk – Seawater Sea-sand Engineered Cementitious Composites (SS-ECC) for Marine and Coastal Infrastructures
January 25 2024 (Thursday) 4:30-5:30pm
Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) is an advanced fiber-reinforced concrete exhibiting multiple-cracking and strain-hardening under tension. We aimed to explore the feasibility of producing high-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications facing the shortage of freshwater and river/manufactured sand. The effects of key composition parameters including the sea-sand size, the polyethylene fiber length, and the fiber volume dosage on the mechanical performance of SS-ECC were comprehensively investigated. The crack characteristics of SS-ECC were also assessed and modelled, which are critical for its applications with non-corrosive reinforcements. SS-ECC with tensile strength over 8 MPa, ultimate tensile strain of about 5%, and compressive strength over 130 MPa were achieved. Using seawater and sea-sand had almost no negative effects on the 28-day mechanical properties of high-strength ECC. Smaller sand size and higher fiber dosage of SS-ECC resulted in smaller crack widths under the same tensile strain. A five-dimensional representation was proposed to assess the overall performance of SS-ECC, by comprehensively considering both the crack characteristics and the mechanical properties. A probabilistic model was also proposed to describe the stochastic nature and evolution of crack width, and it can be used to estimate the critical tensile strain on SS-ECC for a given crack-width limit and cumulative probability. The findings and proposed methods can facilitate the design of SS-ECC in marine and coastal infrastructures.