TechTalk – Quantitative Predictive Theories through Integration of Quantum, Statistical, and Irreversible Thermodynamics
August 28, 2023 (Monday) 2-3pm
Thermodynamics is a science concerning the state of a system, whether it is stable, metastable, or unstable. Its derivatives to natural variables give fundamental physico-chemical properties of the system. It is historically divided into four categories: equilibrium thermodynamics by Gibbs, statistical thermodynamics by Gibbs and Landau, irreversible thermodynamics by Onsager and Prigogine, and quantum mechanics. The development of density function theory (DFT) enabled the quantitative prediction of properties of the ground state of a system from quantum mechanics. Their integration into predictive theories will be discussed in this presentation along with future perspectives. It will be shown that the zentropy theory combines the bottom-up DFT predictions with the revised top-down statistical thermodynamics, while the theory of cross phenomena keeps the entropy production due to irreversible processes in the combine law of thermodynamics to revise the Onsager flux equations. The zentropy theory is capable of quantitatively predicting free energy landscape, singularity and emergent divergences of properties at critical point free of parameters, while the theory of cross phenomena can predict the coefficients of internal processes between non-conjugate variables.