Innovation Wing Two

3D Printed Anti-counterfeiting Labels At the Microscale

Counterfeiting threatens the global economy and security. According the report issued by the United States Patent and Trademark Office (USPTO) in 2020 “the value of global counterfeiting and pirated products is estimated US $ 4.5 trillion a year.” Despite enormous efforts, conventional anti-counterfeiting approaches such as QR codes can be easily fabricated due to limited data encryption capacity on a 2D in-plane space.

How can we increase the encryption density in a limited space?

Development and Evaluation of an Immersive Virtual Reality-based Exercise System for Upper Limb Motor Exercises in Patients after Stroke: A Proof-of-concept Randomized Controlled Trial

An immersive virtual reality-based exercise system was developed to support poststroke upper limb exercises. In a 2-week randomized controlled trial, fifty patients used the system for exercises (intervention) or a sham entertainment program (control). The findings demonstrate that the system can improve shoulder joint motion and is safe and acceptable.

Low-Cost and Efficient Green Device for CO2 Recycling and Energy Storage

The spread of pathogenic microorganisms in public spaces poses a great threat to human health.

Professor Leung’s team develops a system using far ultraviolet C (UVC) light (wavelength: 222nm) for surface and air disinfection in an actual environment without affecting the normal usage of the area.
Many studies indicated that Far UVC will not create harmful effect on testing creatures such as mice. To further strengthen the safety use of the device for disinfection, the system will not irradiate far UVC light in the presence of people in the area so it will be totally safe in using it.

DipµChip – An Automated Tool for Point-of-care Disease diagnostics

DipµChip is an automated capillary microfluidic-based point-of-care (POC) microsystem allowing rapid and portable detection of various high-impact and mortality diseases, such as pneumonia, sepsis, malaria, and COVID-19. Our Mission is “Empowering access to adequate clinical care for high-impact disease patients using molecular biology and point-of-care microfluidics.” End-users of DipµChip include clinics, hospitals, homes, and assisted living healthcare facilities, democratizing access to adequate clinical care, and saving precious lives of patients in need.

Memristor-based Neuromorphic Computing Systems

The evolution of artificial intelligence (AI) and the growing demands from Big Data are hampered by current hardware performance, spurring extensive research into accelerator chips. As silicon transistors reach physical limits, there is an urgent need to explore new computing paradigms based on unconventional devices.
Dr Li’s team is developing new brain-inspired computing paradigms using emerging memory devices, aiming to showcase the potential of these neuromorphic computing systems in laboratory settings.

TechTalk – Expanded Potential Stem Cells: A New Tool for Basic and Translational Research

August 3, 2023 (Thursday) 4:30-5:30pm
Mouse embryonic stem cells (ESCs) derived from the epiblast contribute to the somatic lineages and the germline upon reintroduction to the blastocyst but are excluded from the extraembryonic tissues in the placenta that are derived from the trophectoderm (TE) and the primitive endoderm (PrE). By inhibiting signal pathways implicated in the earliest embryo development, we established cultures of mouse expanded potential stem cells (EPSCs) from individual 4-cell and 8-cell blastomeres, by direct conversion of embryonic stem cells (ESCs) and through reprogramming somatic cells. Bona fide trophoblast stem cell (TSC) lines, extra-embryonic endoderm stem (XEN) cells, and ESCs could be directly derived from EPSCs in vitro. The knowledge of mouse EPSCs has enabled the establishment of EPSCs of human, pig, bovine and additional mammalian species. EPSCs of these species share similar molecular features and developmental potentials. They are genetically and epigenetically stable, can be maintained in homogenous long-term cultures and permit efficient precision and complex genome editing. EPSCs thus provide new tools for studying normal development and open up new avenues for translational research in biotechnology, agriculture, and regenerative medicine. For example, we find that early syncytiotrophoblasts produced from human TSCs are highly susceptible to coronavirus infection. This finding has enabled the development of a new stem cell-based antiviral drug discovery technology. I will discuss our thoughts on collaborations with engineering colleagues.

TechTalk – Pandemic Preparedness and Response in the Age of Information

Global responses to the COVID-19 pandemic have largely been suboptimal due to significant underdevelopment of infrastructure, human capital and analytics in pandemic prevention, preparedness, and response (PPR). In particular, epidemic nowcasting has been universally challenging because it requires distilling informative or actionable insights from diverse range of real-world data which are often biased. Misinterpretation, misrepresentation or otherwise misuse of these nowcasts will fuel infodemics, as we have learned to our detriment during the COVID-19 pandemic. We will discuss some lessons learned from COVID-19 and how we can strengthen pandemic PPR in the Age of Information.