TechTalk

TechTalk Panel Discussion on Recruitment of HK Payload Specialists

This TechTalk panel discussion will first brief the participants on the basic information on the exciting National Manned Space Programme Recruitment of Payloads Specialists in HKSAR. This will be followed up by panel discussion on overseas experience of payload specialists and potential aerospace experiment ideas.
More information about the programme can be found in https://www.itib.gov.hk/en/psrecruitment/.

TechTalk – Wearable Assistive Robots for Aging Society

A rapidly aging population is one of the grand challenges facing the society. It is estimated that by 2050, the global population of people aged 65 or older will reach 1.6 billion. This is a major difficulty that many elders are experiencing severe limitations in mobility and manipulability in their daily lives, resulting in tremendous social and economic challenges. This talk will discuss a User-Centric Co-Creation (UC³) approach to develop intelligent robotic systems to assist mobility and manipulability as well as prevent falls. The UC³ methodology lays down a theoretical foundation for multi-disciplinary approach to the development of personalized wearable assistive systems. It will pave a new avenue to advance the ergonomics and gerontechnology beyond current horizons.

TechTalk – Autonomous Excavation: Manipulation and Perception of Granular Materials

Autonomous excavators are an essential part of the goal of “building the robots that build the world”. One unique problem in autonomous excavation is how to deal with the granular materials like soils and sands, which is seldom studied in robotics. In this talk, Dr. Pan will present his team’s recent work about how to achieve efficient manipulation of soils by optimizing the trajectory of the excavator’s bucket, and how to enable the excavator to be aware of the objects buried in the soils by using a proximity sensing mechanism based on jamming in granular materials.

TechTalk – Micro-robots Powered by Stimuli-responsive Materials

Conventional mechatronic, hydraulic and pneumatic motors and actuators are used for large-scale robots from ≥10 cm to the human size. At the other, nanometric end of the length scale, nano-robots are powered by molecular motors. However, a number of applications in compact environments require robotic devices in the size range of 10 µm to 10 mm, but these are too small to be powered by the conventional mechatronic systems, and too large for molecular motors. Such a length scale ideally suits a few types of high-performance stimuli-responsive actuating materials that are emerging out of a very active research field in the past two decades, with examples including shape-memory polymers and metals, nanoporous noble metals, reactive polymers and liquid-crystal elastomers, carbon-based materials and transitional metal oxides. In addition to high actuating power densities, some of these materials also offer built-in sensory functions such as resistivity responses to mechanical, heat and humidity changes in the environment, and even energy generation capabilities. Integration of these materials and their signal flows in compact designs thus poses a novel strategy for robotics at the micro length scale. This talk will review some recent progress in this field.

Young Scholar TechTalk – Subgraph Federated Learning with Missing Neighbor Generation

In computer science, a graph is a network modeling objects and their unique interactions. The graph learning model is a specialized machine learning model that learns on graphs. Similar to traditional machine learning models, a well-performed graph learning model can capture the global data distribution with sufficient and unbiased training data. However, in a distributed subgraph system, most data owners only possess small amounts of the data (small subgraphs) in their local systems and can have unpredictable biases.
In this talk, the speaker will introduce this novel yet realistic setting – subgraph federated learning, which aims to let distributed data owners collaboratively train a powerful and generalized graph learning model without directly sharing their subgraphs. Towards this setting, two major techniques are proposed by the research team. (1) FedSage, which trains a GraphSage model based on FedAvg to integrate node features, link structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing neighbor generator along FedSage to deal with missing links across local subgraphs. Empirical results and theoretical analysis of proposed models respectively demonstrate the effectiveness and prove the generalization ability.

TechTalk – Cyber-Physical Internet (CPI) for Cross-Border Logistics of Manufactured Products

The vision of “Cyber-Physical Internet (CPI)” is to establish a new paradigm for sending and receiving manufactured goods just like sending and receiving instant messages over the internet using online chatting platforms. Four innovations are critical to achieve this ultimate vision: (1) digitization architecture for entangling the flows of information and materials into one flow of cyber-physical objects for manufacturing and logistics operations; (2) network services for configuring local aera network (LAN), wide area network (WAN) and catchment area network (CAN); (3) value mechanisms to motivate and facilitate participation and collaboration between multiple stakeholders including shippers, carriers, forwarders; and (4) decision analytics for synchronized logistics planning, scheduling and execution. These innovations are based upon some fundamental breakthroughs of CPI routers and TCP/PIP protocols that are yet to be developed.

Tech Talk – Innovation of Originality for Solving Sand Shortage Crisis around the World including Hong Kong

Sand is the most exploited raw solid material in the world and used for construction of buildings, roads, railways, bridges, tunnels and beaches. It is also used to make the glass and silicon chips. The annual consumption for use in glass, concrete and construction materials has reached 50 billion tones, which is extremely high. Consequently, according to United Nations’ reports, the world is facing a shortage crisis of sand, as one of the greatest sustainability challenges of the 21st century. Such sand shortage crisis around the world has affected the use of sand in Hong Kong since Hong Kong does not produce any sand and all the sand used in Hong Kong is imported from Mainland China. In this Teck Talk, Professor Yue will present his technological innovation of originality. His innovation can solve this global sand shortage crisis. More importantly, his innovation can provide a stable supply of quality sand for construction and industry and offer new raw material resources for developing new industry in Hong Kong. Professor Yue has discovered that the local ordinary soil in Hong Kong can be converted into the materials of sand and clay. The sand is silica sand and mainly quartz mineral. The clay is mainly kaolinite mineral. Both materials can be used as the raw solid materials in construction and other industry. Professor Yue will demonstrate that his technical innovation is simple, environmental-friendly, sustainable and cost-effective and can be applied to many places around the world for producing quality sand materials.

Tech Talk – Seeing the unseen in biomedicine with laser

In the past 10+ years, laser microscopy has successfully made it permeated not only in biochemistry and cell/molecular biology research, but also in numerous preclinical and clinical applications. However, our understanding of health and disease is still very limited. This lecture will introduce the latest breakthrough in laser microscopy technologies developed at HKU that can address some of these challenges. Especially these technologies can generate unprecedented views and understanding of the living biological cells. They include: capturing high-resolution motion picture of the swift-flying brain signals in a living animal; visualizing the inner workings of biological cells and organisms in 3D without killing them; and detecting rare cancer cells in millions of blood cells. Not only can these technologies impact new biological discovery (e.g. neuroscience), but also creating many new opportunities in cost-effective clinical diagnosis, especially cancer screening.

Tech Talk – The infini love diamond with a massive future in science

The diamond has been well known as the gem stones in jewellery market, and the same material with various atomic defects, i.e., fluorescent impurities in diamond lattice, shows unique quantum behaviors even at ambient conditions. A diamond, not just a best friend of ladies, but also the best friend of scientists. Due to their unique quantum properties, these atomic defects has been demonstrated to achieve nanometric measurement of various physical quantities such as electromagnetic fields, temperature and etc. with unprecedented precision. Here, I will firstly review the development of diamond-based science and technology, and discuss its potential applications in diverse fields. Specifically, I will introduce the on-going research activities in my group, mainly including the high figure-of-merit diamond materials synthesis, advanced quantum diamond microscope development and diamond quantum sensing in single living cells. In addition, I will also share my journey in exploring beyond academics, e.g., we apply quantum diamond microscope for authenticity identification in local jewellery industry.

Tech Talk – Anti-Covid-19 stainless steel

Stainless steel (SS) is one of the most extensively used materials in many public areas and hygiene facilities but has no inherent antimicrobial properties. Additionally, the SARS-CoV-2 exhibits strong stability on regular SS surfaces, with viable viruses detected even after three days. Undoubtedly, this has created a high possibility of virus transmission among people using these areas and facilities. Here, this talk presents the inactivation of pathogen microbes (especially the SARS-CoV-2) on SS surface by tuning the chemical composition and microstructure of regular SS. It is discovered that Pathogen viruses like H1N1 and SARS-CoV-2 exhibit good stability on the surface of pure Ag and Cu-contained SS of low Cu content, but are rapidly inactivated on the surface of pure Cu and Cu-contained SS of high Cu content. Significantly, the developed anti-pathogen SS with 20 wt% Cu can distinctly reduce 99.75% and 99.99% of viable SARS-CoV-2 on its surface within 3 and 6 h, respectively. Lift buttons made of the present anti-pathogen SS are produced using mature powder metallurgy technique, demonstrating its potential applications in public areas and fighting the transmission of SARS-CoV-2 and other pathogens via surface touching.