TechTalk

TechTalk – Rapid Diagnostic Tests for Emerging Infectious Diseases

Emerging infectious diseases, such as COVID-19 and pandemic influenza, have a significant impact on the healthcare system and the society. Rapid diagnostic tests are essential for guiding patient management and infection control measures, which lead to improvement in patient outcome and prevent outbreaks in the community and in hospitals. In recent years, fully automated testing has greatly reduced the complexity of diagnostic testing and shortened the turn-around time. Despite their potential benefits, several challenges need to be addressed. In this talk, Professor To will present the advances in rapid diagnostic testing, and will discuss about the hurdles in implementing these novel technologies in real-life settings.

TechTalk – Organic Neuromorphic Materials and Devices

By integrating sensing, memory and processing functionalities, biological nervous systems are energy and area efficient. Emulating such capabilities in artificial systems is, however, challenging and is limited by the device heterogeneity of sensing and processing cores., Here, we present a universal solution to simultaneously perform multi-modal sensing, memory and processing using organic electrochemical transistors. The device has a vertical traverse architecture and a crystalline–amorphous channel that can be selectively doped by ions to enable two reconfigurable modes: volatile receptor and non-volatile synapse. As a volatile receptor, the device is capable of multi-modal sensing, and as a non-volatile synapse, it is capable of 10-bit analogue states, low switching stochasticity and good state retention. Homogeneous integration of such devices enables functions such as conditioned reflex and real-time cardiac disease diagnose via reservoir computing, illustrating the promise for future edge AI hardware.

Young Scholar TechTalk – Chip-scale Sensing: From Classical to Quantum Regime

Miniature optoelectronic sensors which have features of convenient, reliable, economic, ultra sensitive, and capable of real-time measurement are highly desirable nowadays. However, currently reported optical and electronic sensing devices are still hindered with complex optical components and bulky equipment. Hence, we hope to further minimize the volume of the sensing system and get rid of the dependence on complex, expensive and bulky sensing components. In particular, we demonstrate a micro-scale III-nitride chip that integrates a light emitter (LED) and a photodetector (PD) together, realizing the emission and detection of signals in a single miniature chip. Thus, we have applied the device into some classical sensing, such as pressure, salinity content and cell activities sensing. Additionally, we also conduct integration on the diamond based quantum sensing system, and demonstrate a compact chip architecture (sub ~mm3 volume) being capable of on-chip quantum sensing.

TechTalk – Biomimetic Soft Materials for Bio-Integrated Smart Devices

Biological tissues are soft, dynamic, and water-rich, while abiotic tools are typically rigid, static, and dry. These differences in physical properties have presented challenges for the development of advanced biomedical systems that require interfacing with the human body. In this presentation, I will introduce our recent work on biomimetic soft composites as a platform for engineering bio-integrated devices that can potentially bridge this gap. These synthetic materials capture important structural features of natural soft tissues and exhibit tissue-mimetic reconfigurability, robustness, and functionality, making them advantageous for constructing bio-interfaces. Soft electronic components were also integrated into the biomimetic materials platform, enabling multifunctional systems for physiological sensing and targeted stimulation. Examples of these smart biomedical tools include artificial cartilage and tendons, electroconductive hydrogels, and organ-integrated 3D electronics, which create exciting opportunities in advanced biomedicine.

TechTalk – A “Programmable” Cell Niche Engineering Platform – Multiphoton Microfabrication and Micropatterning (MMM) Technology

In native tissues, cells reside in a complex microenvironment (niche) consisting of factors including neighbor cells, soluble factors, extracellular matrices, topological and mechanical signals. Cell niche is critical in maintaining their phenotype and determining their fates and functions. Reconstituting complex cell niche factors in vitro, either individually or in combinations, in a quantitatively and spatially controllable manner, is critical for investigating the interactions between cells and their niches and hence deriving designing strategies for optimal conditions during cell culture applications and optimal scaffolds for tissue engineering applications. Our lab has developed a multiphoton microfabrication and micropatterning (MMM) technology. Here, the technical capability of the MMM platform in fabricating complex protein microstructures and micropatterns with pre-designed topological features, mechanical properties, extracellular matrix, cell interaction molecules and soluble factors, and biomedical applications including cell niche factor screening for phenotype maintenance and engineering cell niche for cell fate determination will be discussed.

TechTalk – AI for Science: From Scientific Discoveries to Platform Engineering

Artificial Intelligence (AI) has been revolutionizing numerous fields within science and engineering, giving rise to “AI for Science” – a new paradigm for both academia and industry. In this seminar, we will explore how AI algorithms and tools empower researchers to tackle intricate scientific challenges, strengthen collaboration, and expedite the discovery process. We will also envision the future of this field in the era of cloud-native infrastructures and large language models, emphasizing the crucial role of platform engineering in nurturing the growth and development of the entire scientific community. Lastly, we will provide examples to illustrate the potential appearance of such platforms and discuss the path towards their realization.

Young Scholar TechTalk – HOF2 – Interact with Device through Simple and Robust Hand-Over-Face Gesture

Mobile devices have been like an extended part of ourselves, but can we really operate a mobile device just as naturally as how we control our fingers or body? We present HOF2, a novel input modality that uses simple gestures over your face to interact with your device. Unlike other gesture-based modalities, HOF2 is highly robust and can avoid false triggering caused by many unconscious gestures like scratching or wiping, while is still easy, comfortable and natural to use. Moreover, HOF2 is highly available and can be implemented on any mobile phone/tablet/computer with a single camera and without remote servers. In this TechTalk, we will present a live demo on iOS/iPadOS demonstrating the performance of HOF2 scheme in practice and explore some real-life use cases such as virtual conferencing, selfie, or TV controller. We believe there are far more possibilities waiting to be explored with this novel interaction scheme.

TechTalk – Learning Optimal Auctions from Data

The design of optimal auctions for revenue maximization is a central topic in Economics. Classical optimal auction theory assumes that bidders’ values are drawn from a known distribution. In reality, the source of such prior information is really past data. Cole and Roughgarden (2014) modeled past data as i.i.d. samples from the value distribution and asked: How many samples are sufficient/necessary to learn a near optimal auction? This TechTalk will introduce a unified theory that yields sample-efficient algorithms with optimal sample complexity for auctions with homogeneous goods, and state-of-the-art sample complexity for auctions with heterogeneous goods. Unlike conventional statistical learning theory which focuses on the complexity of hypothesis classes, our new theory relies on the simplicity of data distributions and a monotonicity property of these problems.

Young Scholar TechTalk – High-throughput Cell Mechanics Characterization with Microfluidics

Cells can sense mechanical stimuli and convert them to biochemical signals for various specific cellular responses, such as stem cells differentiation, initiation of transcriptional programs, and cell migration. Cell mechanics focuses on the mechanical properties and behaviours of living cells and how cell mechanics relates to various cell functions. Currently, traditional cell mechanics measurement methods are cumbersome, low-throughput, and expensive to deploy. By exploiting microfluidic technology, Dr. Johnson Cui is investigating the cancer cell mechanics and developing an accurate, easy-to-use cell mechanics measurement platform for cell mechanics research and also for cancer diagnosis and therapeutics in the future.

TechTalk – Robotics and AI for Real-world Challenges

Current AI cannot provide a complete solution for robotics, although AI is a useful tool for real-world challenges that cannot be solved by traditional methods. We will discuss how AI can be applied to solve real-world problems using robotic systems developed by our team so far. Inspired by a dance partner robot developed for the Aichi Expo in 2005, a co-worker robot “PaDY” was developed for the automotive assembly process. Intention estimation was a key to these collaborative robots. AI has also led to the development of robotic applications in manufacturing, such as computer vision for bin picking, grasp planning, robot motion planning, and assembly of textureless industrial parts using visual servoing. Recent advances in AI are making it possible to tackle the manipulation of soft materials. The JC STEM Lab of Robotics for Soft Materials funded by the Hong Kong Jockey Club Charities Trust covers this new field.