A Self-rotating, Single-actuated UAV with Extended Sensor Field of View for Autonomous Navigation
The UAV is named Powered-flying Ultra-underactuated LiDAR-sensing Aerial Robot (PULSAR), whose motion in three-dimensional space is controlled by only a single actuator (i.e., motor). The single actuator design can naturally cause self-rotation motion of the UAV body, obviously extending the field of view (FoV) of the onboard LiDAR sensor. Furthermore, it also effectively reduces the energy loss of the propulsion system, allowing PULSAR to save 26.7% of energy consumption compared to a benchmarked quadrotor UAV. Utilizing the extended FoV and onboard computing resource, PULSAR can perform autonomous navigation in unknown environments and detect both static and dynamic obstacles in panoramic views without using any external instruments. PULSAR has large FoV, high flight efficiency, and autonomous navigation ability, which are all beneficial for the environmental observation and information collection. Therefore, it can be used in various applications, such as environment surveying, search and rescue, terrain mapping, and automatic 3D reconstruction.









