Innovation Wing Two

MindPipe: High-performance and Carbon-efficient Four-dimensional Parallel Training System for Large AI Models

MindPipe, the first 4D parallel training system for large DNN models, has the following objectives:
1. Greatly reducing load imbalance in GPU pipeline parallel stages; 2. Effectively resolving contention of the 3D parallel communication tasks; 3. Deterministically scheduling multiple subnets to be trained in supernet parallelism, a novel parallel dimension proposed by MindPipe; and 4. Automatic near-optimal 4D configuration of GPUs considering both DNN converging efficiency and GPU utilization.

Wireless AI Perception: A New Sense for Machine Intelligence

Computer vision enables machines to “see”. The capability of machine vision based on cameras, however, is fundamentally limited to a certain field-of-view with good lighting conditions – they cannot see through any occlusions or in the dark.
Wireless sensing opens a new sense for machine perception to decipher the physical world, even in absolute darkness and through walls and obstacles.
It can capture human activities invisibly in a contactless and sensorless way.

Augmented Reality based Robot Control System for Customized Garment Production

Garment industry needs to embrace flexible automation and robotics to lower cost and to enhance human productivity. As it is too complex to achieve full automation in garment production, collaborative works between robots and humans will be foreseen. The project demonstrates the feasibility of deploying multi-robots by combining computer vision and robotic technologies.

Tech Talk – The infini love diamond with a massive future in science

The diamond has been well known as the gem stones in jewellery market, and the same material with various atomic defects, i.e., fluorescent impurities in diamond lattice, shows unique quantum behaviors even at ambient conditions. A diamond, not just a best friend of ladies, but also the best friend of scientists. Due to their unique quantum properties, these atomic defects has been demonstrated to achieve nanometric measurement of various physical quantities such as electromagnetic fields, temperature and etc. with unprecedented precision. Here, I will firstly review the development of diamond-based science and technology, and discuss its potential applications in diverse fields. Specifically, I will introduce the on-going research activities in my group, mainly including the high figure-of-merit diamond materials synthesis, advanced quantum diamond microscope development and diamond quantum sensing in single living cells. In addition, I will also share my journey in exploring beyond academics, e.g., we apply quantum diamond microscope for authenticity identification in local jewellery industry.

Tech Talk – Anti-Covid-19 stainless steel

Stainless steel (SS) is one of the most extensively used materials in many public areas and hygiene facilities but has no inherent antimicrobial properties. Additionally, the SARS-CoV-2 exhibits strong stability on regular SS surfaces, with viable viruses detected even after three days. Undoubtedly, this has created a high possibility of virus transmission among people using these areas and facilities. Here, this talk presents the inactivation of pathogen microbes (especially the SARS-CoV-2) on SS surface by tuning the chemical composition and microstructure of regular SS. It is discovered that Pathogen viruses like H1N1 and SARS-CoV-2 exhibit good stability on the surface of pure Ag and Cu-contained SS of low Cu content, but are rapidly inactivated on the surface of pure Cu and Cu-contained SS of high Cu content. Significantly, the developed anti-pathogen SS with 20 wt% Cu can distinctly reduce 99.75% and 99.99% of viable SARS-CoV-2 on its surface within 3 and 6 h, respectively. Lift buttons made of the present anti-pathogen SS are produced using mature powder metallurgy technique, demonstrating its potential applications in public areas and fighting the transmission of SARS-CoV-2 and other pathogens via surface touching.

Tech Talk – Membranes for Water and Beyond

Membrane separation technology is increasingly used for water and energy related applications. Pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), have received great attention, fueled by the increasing needs for water purification, wastewater treatment and reclamation, and seawater desalination. In parallel, many novel membranes and membrane processes are being developed. In this TechTalk, Prof. Chuyang Tang will share his personal journey in the amazing membrane world. He will highlight some of his previous and ongoing research works covering topics on water reuse, seawater desalination, resource recovery, energy production, and beyond.