clarecmy

Avatar

TechTalk Panel Discussion on Recruitment of HK Payload Specialists

This TechTalk panel discussion will first brief the participants on the basic information on the exciting National Manned Space Programme Recruitment of Payloads Specialists in HKSAR. This will be followed up by panel discussion on overseas experience of payload specialists and potential aerospace experiment ideas.
More information about the programme can be found in https://www.itib.gov.hk/en/psrecruitment/.

TechTalk – Wearable Assistive Robots for Aging Society

A rapidly aging population is one of the grand challenges facing the society. It is estimated that by 2050, the global population of people aged 65 or older will reach 1.6 billion. This is a major difficulty that many elders are experiencing severe limitations in mobility and manipulability in their daily lives, resulting in tremendous social and economic challenges. This talk will discuss a User-Centric Co-Creation (UC³) approach to develop intelligent robotic systems to assist mobility and manipulability as well as prevent falls. The UC³ methodology lays down a theoretical foundation for multi-disciplinary approach to the development of personalized wearable assistive systems. It will pave a new avenue to advance the ergonomics and gerontechnology beyond current horizons.

TechTalk – Autonomous Excavation: Manipulation and Perception of Granular Materials

Autonomous excavators are an essential part of the goal of “building the robots that build the world”. One unique problem in autonomous excavation is how to deal with the granular materials like soils and sands, which is seldom studied in robotics. In this talk, Dr. Pan will present his team’s recent work about how to achieve efficient manipulation of soils by optimizing the trajectory of the excavator’s bucket, and how to enable the excavator to be aware of the objects buried in the soils by using a proximity sensing mechanism based on jamming in granular materials.

TechTalk – Micro-robots Powered by Stimuli-responsive Materials

Conventional mechatronic, hydraulic and pneumatic motors and actuators are used for large-scale robots from ≥10 cm to the human size. At the other, nanometric end of the length scale, nano-robots are powered by molecular motors. However, a number of applications in compact environments require robotic devices in the size range of 10 µm to 10 mm, but these are too small to be powered by the conventional mechatronic systems, and too large for molecular motors. Such a length scale ideally suits a few types of high-performance stimuli-responsive actuating materials that are emerging out of a very active research field in the past two decades, with examples including shape-memory polymers and metals, nanoporous noble metals, reactive polymers and liquid-crystal elastomers, carbon-based materials and transitional metal oxides. In addition to high actuating power densities, some of these materials also offer built-in sensory functions such as resistivity responses to mechanical, heat and humidity changes in the environment, and even energy generation capabilities. Integration of these materials and their signal flows in compact designs thus poses a novel strategy for robotics at the micro length scale. This talk will review some recent progress in this field.

Young Scholar TechTalk – Subgraph Federated Learning with Missing Neighbor Generation

In computer science, a graph is a network modeling objects and their unique interactions. The graph learning model is a specialized machine learning model that learns on graphs. Similar to traditional machine learning models, a well-performed graph learning model can capture the global data distribution with sufficient and unbiased training data. However, in a distributed subgraph system, most data owners only possess small amounts of the data (small subgraphs) in their local systems and can have unpredictable biases.
In this talk, the speaker will introduce this novel yet realistic setting – subgraph federated learning, which aims to let distributed data owners collaboratively train a powerful and generalized graph learning model without directly sharing their subgraphs. Towards this setting, two major techniques are proposed by the research team. (1) FedSage, which trains a GraphSage model based on FedAvg to integrate node features, link structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing neighbor generator along FedSage to deal with missing links across local subgraphs. Empirical results and theoretical analysis of proposed models respectively demonstrate the effectiveness and prove the generalization ability.

TechTalk – Cyber-Physical Internet (CPI) for Cross-Border Logistics of Manufactured Products

The vision of “Cyber-Physical Internet (CPI)” is to establish a new paradigm for sending and receiving manufactured goods just like sending and receiving instant messages over the internet using online chatting platforms. Four innovations are critical to achieve this ultimate vision: (1) digitization architecture for entangling the flows of information and materials into one flow of cyber-physical objects for manufacturing and logistics operations; (2) network services for configuring local aera network (LAN), wide area network (WAN) and catchment area network (CAN); (3) value mechanisms to motivate and facilitate participation and collaboration between multiple stakeholders including shippers, carriers, forwarders; and (4) decision analytics for synchronized logistics planning, scheduling and execution. These innovations are based upon some fundamental breakthroughs of CPI routers and TCP/PIP protocols that are yet to be developed.

Tech Talk – Innovation of Originality for Solving Sand Shortage Crisis around the World including Hong Kong

Sand is the most exploited raw solid material in the world and used for construction of buildings, roads, railways, bridges, tunnels and beaches. It is also used to make the glass and silicon chips. The annual consumption for use in glass, concrete and construction materials has reached 50 billion tones, which is extremely high. Consequently, according to United Nations’ reports, the world is facing a shortage crisis of sand, as one of the greatest sustainability challenges of the 21st century. Such sand shortage crisis around the world has affected the use of sand in Hong Kong since Hong Kong does not produce any sand and all the sand used in Hong Kong is imported from Mainland China. In this Teck Talk, Professor Yue will present his technological innovation of originality. His innovation can solve this global sand shortage crisis. More importantly, his innovation can provide a stable supply of quality sand for construction and industry and offer new raw material resources for developing new industry in Hong Kong. Professor Yue has discovered that the local ordinary soil in Hong Kong can be converted into the materials of sand and clay. The sand is silica sand and mainly quartz mineral. The clay is mainly kaolinite mineral. Both materials can be used as the raw solid materials in construction and other industry. Professor Yue will demonstrate that his technical innovation is simple, environmental-friendly, sustainable and cost-effective and can be applied to many places around the world for producing quality sand materials.

Smart Water Auditing for Hong Kong

The project is an integral part of a flagship research initiative being carried out under the auspices of the HKU Center for Water Technology and Policy. The Water Centre was jointly established by the Faculty of Engineering and the Faculty of Social Sciences to conduct cutting-edge research on water science, technology and policy issues that pertain to the broader urban sustainability agenda. We would like to acknowledge the contributions of the members of our inter-disciplinary project team. They come from the Department of Civil Engineering, Department of Electrical and Electronic Engineering, Department of Mechanical Engineering, Department of Politics and Public Administration and the Faculty of Social Sciences.

nD Blockchain for ESG Reporting

The introduction of the Environmental, Social and Governance (ESG) Reporting Guide (Guide) by HKEX in 2013, and the subsequent upgrade of the Guide’s reporting obligation to “comply or explain” in 2016, have significantly moved the dial for Hong Kong issuers’ ESG reporting. However, ESG reporting faces many bottlenecks, including data authenticity, consistency, and transparency. Professor Huang’s team developed an IoT- and blockchain-based platform to upgrade the ESG reporting industry.