Protected: CNC Milling Machine
There is no excerpt because this is a protected post.
There is no excerpt because this is a protected post.
There is no excerpt because this is a protected post.
There is no excerpt because this is a protected post.
The project aims to develop a reusable face mask filter using nanofiber technique to relieve the social and environmental burden caused by current one-time using face masks. The filter consists of electrospun nanofibers with much smaller diameters (e.g., nm level), which are much smaller than the commercial filter fibers (e.g., µm level). The developed nanofibrous filter has high air filtration efficiency without sacrificing the breathe comfortability, which can be attributed to its high porosity and improved physical structure. The filter design is also highly flexible to incorporated with other physicochemical methods for further improvement of the filter properties. An impressive feature of this invention is the reusability. Simple chemical washing can regenerate the exhausted filter for further reuse with maintained high air filtration performance.
Every day, millions of Hong Kongers use public transport to travel across the city. With the ongoing COVID-19 pandemic, public transport has the potential to spread the novel Coronavirus. This can be avoided if strict preventive measures are in place.
The solution to this is a non-intrusive, real time application that automates fever screening in public transport vehicles. This is made possible thanks to a mobile application that we are developing at HKU. We use a portable thermal camera and a mobile device to detect faces in a stream of thermal images, and then measure forehead temperatures. This can be done in real-time, and requires little to no manual intervention.
This project aimed at building an autonomous chess-playing machine that can play chess with a human player at home. It consisted of making a robotic arm, building arm controller apps, applying openCV on the mobile phone, and building an AI chess engine.
The working logic are described as four steps. First, the phone capture an image of the chessboard. Then, it recognizes the chessboard and location and color of the piece. Next, the chess engine determines the next move and sends the command to the robotic arm. Finally, the robotic arm helps to move the piece.
Since the gaming industry is becoming saturated, players tend to raise their requirements to the quality of gaming experience. Fusion of physical and virtual gaming experience may provide a fresh feeling to the players. In this project, a single-player Augmented Reality (AR) mobile game called Hexplore Fort is developed, where the players can control a spider-like robot – hexapod to adventure with the storyline in the game. Players can explore the fort that is augmented by AR by controlling the movement of hexapod, collecting items, fighting with enemies and buying assistance provided by the spy, in order to capture the princess.