cheukky

Avatar

High-voltage Aqueous Mg-ion Battery Facilitated by Water-in-salt Electrolyte

Although widely used in our daily life, lithium (Li) -ion batteries fall short because the materials used are often scarce, toxic, and expensive. They also have safety issue in operation due to their organic based electrolytes. Beyond lithium-ion batteries, a low-cost magnesium (Mg) metal anode based aqueous Mg-ion battery has been developed first time by Professor Dennis Leung’s research team in the HKU Department of Mechanical Engineering. As Mg is the 5th most abundant metal element in the earth’s crust (three orders of magnitude more than Li), the advantages of low cost and non-toxicity make Mg a desirable alternative to Li as the anode material. The proposed battery shows a high discharge plateau of 2.4-2.0 V and an excellent rechargeability for over 700 stable cycles. This high operation voltage exceeds the counterpart of other multivalent-ion batteries, including zinc (Zn) metal and aluminum (Al) metal batteries. The mechanism behind was also revealed, where a conductive metallic oxide layer was facilitated by the chloride (Cl-) ions inside the water-in-salt electrolyte, providing ionic pathways for rechargeable battery operations. The team hopes that the chemical insights obtained in this work could inspire further optimization and bring attention to the overlooked development of rechargeable aqueous Mg metal batteries. This work uncovers the once dismissed possibility of aqueous Mg metal batteries and opens a new avenue in the field of post-lithium-ion batteries. Other project team members are Dr. Wending Pan (Research Assistant Professor) and Miss Sarah Leong (PhD student).

High-speed Laser-scanning Biological Microscopy using FACED

Laser scanning is used in advanced biological microscopy to deliver superior imaging contrast, resolution and sensitivity. However, it is challenging to scale up the scanning speed required for interrogating a large and heterogeneous population of biological specimens or capturing highly dynamic biological processes at high spatiotemporal resolution. Bypassing the speed limitation of traditional mechanical methods, free-space angular-chirp-enhanced delay (FACED) is an all-optical, passive and reconfigurable laser-scanning approach that has been successfully applied in different microscopy modalities at an ultrafast line-scan rate of 1-80 MHz. Optimal FACED imaging performance requires optimized experimental design and implementation to enable specific high-speed applications. In this protocol, we aim to disseminate information allowing FACED to be applied to a broader range of imaging modalities. We provide (i) a comprehensive guide and design specifications for the FACED hardware; (ii) step-by-step optical implementations of the FACED module including the key custom components; and (iii) the overall image acquisition and reconstruction pipeline. We illustrate two practical imaging configurations: multimodal FACED imaging flow cytometry (bright-field, fluorescence and second-harmonic generation) and kHz 2D two-photon fluorescence microscopy. Users with basic experience in optical microscope operation and software engineering should be able to complete the setup of the FACED imaging hardware and software in ~2-3 months.

Augmented Reality based Robot Control System for Customized Garment Production

Garment industry needs to embrace flexible automation and robotics to lower cost and to enhance human productivity. As it is too complex to achieve full automation in garment production, collaborative works between robots and humans will be foreseen. The project demonstrates the feasibility of deploying multi-robots by combining computer vision and robotic technologies.

Biofilm Inhibition in Oral Pathogens by Nanodiamonds​

Complex microbial communities, e.g., biofilms residing in our oral cavity, have recognized clinical significance, as they are typically the main cause for infections. Diamond nanoparticles, namely, nanodiamonds (NDs) have been demonstrated to work as an effective antibacterial agent against planktonic cells (free-floating state) due to their many promising physico-chemical properties. However, little is known about the behaviors of NDs against biofilms (sessile state).

Tech Talk – Light or Fiber Touch

Precision manipulation of various liquids is essential in many fields, including DNA analysis, proteomics, cell assay and clinical diagnosis, chemical synthesis, and drug discovery. Their divisible, sticky, and sometime infectious features impose, however, great challenges on processing them, particularly when their volume is down to nano-/subnano-liter. A blood droplet from an Ebola patient can for example infect medical workers through the skin. For diagnosis, medial workers have to crash, filter, and purify a patient’s blood sample to obtain the virus’s genetic materials. This series of operations, very often in a fluidic medium, is highly infectious. Moreover, fluids stick to surfaces, which will contaminate containers and handling tools, causing potential dangers if the medical wastes are not properly managed. In this talk, Prof. Wang shall demonstrate how a simple light or fiber touch functions as a “magic” wetting-proof hand to navigate, fuse, pinch, and cleave fluids on demand, being capable of reducing and even replacing the usage of disposable plastics in the biomedical and pharmaceutical industries.

Tech Talk – HINCare: Using Heterogenous Information Networks for Elderly Care Recommendation

In Hong Kong, the number of elderly citizens is estimated to rise to one third of the population, or 2.37 million, in year 2037. As they age and become more frail, the demand for formal support services (e.g., providing domestic or escort services) will increase significantly in the coming years. However, there is a severe lack of manpower to meet these needs. Some elderly-care homes reported a 70% shortage of employees. There is thus a strong need of voluntary or part-time helpers for taking care of elders.
In this talk, Prof. Cheng will introduce HINCare, a software platform that encourages mutual-help and volunteering culture in the community. HINCare uses the HIN (Heterogeneous Information Network) to recommend helpers to elders or other service recipients. The algorithms that use HINs and AI technologies for matching elders and helpers are based on our recent research results. This is the first time that HIN is used to support elderly care.
HINCare is now downloadable in Apple and Google Play Store, and has been serving more than a thousand of elders and helpers in NGOs (e.g., SKH and CSFC). The app is originally designed for elderly users, but has now expanded its services to support the Community Investment and Inclusion Fund (CIIF) and 10 NGOs engaged in teenage and family services. The system won the HKICT Award 2021, Asia Smart App Award 2020, and the HKU Faculty Knowledge Exchange Awards 2021 HKU.

Tech Talk – Smarter, smaller and softer robots for medical image-guided minimally invasive surgery

In recent years, there has been a trend towards integrating small, soft and deformable structures into surgical robot systems. Target applications include endoscopy or magnetic resonance imaging (MRI)-guided intervention, where researchers take advantage of soft and flexible robots for their inherent mechanical compliance. However, these flexible robotic systems are often controlled in an open loop or with positional feedback from 3D tracking devices. Not only the real-time feedback of flexible/soft robot configuration or morphology itself is of importance, but also the robot manipulation modelling, as well as its intelligent control, become an area of interest in the field. To this end, this talk will present various robot prototypes, which attempt to resolve unmet clinical and technical challenges for image-guided intervention or surgery, either in strong magnetic field (1.5-3T) by magnetic resonance imaging (MRI) scanner or in confined anatomical space through endoscopy. Machine intelligent approaches, and also the recent advances in continuum robot design and learning-based sensing/control will also be overviewed. These robots have to incorporate with efficient mechanical transmission, thus enabling delicate mechanical force/motion transmitted from actuators to surgical tools in a long and flexible route. The ultimate goal is to provide high-performance control of robotics instruments for safe, precise and effective surgical manipulation. The speaker will not only share his research outcome, but also various difficulties in his up-and-down research journey, from R&D in university, (pre-)clinical trials in hospital, then technology transfer for clinical applications.

Tech Talk – Plastic Response of Cells: from Embryo Development to Disease Detection

Living cells need to undergo significant shape changes during processes such as cell division, migration and tissue formation. Therefore, it is commonly believed that the deformability of cells is intimately related to their capability in executing different biological duties as well as the progression of diseases. In this talk, I will discuss how irreversible deformation of cells ensures proper axial extension of embryos during their development and how the plastic response of tumor cells can be used in monitoring the progression of cancer. Specifically, I will show that the presence of active intracellular/intercellular contraction will trigger the severing and re-bundling of actin filaments in cells (leading to cellular anisotropy and plasticity), elevate the internal hydrostatic pressure of embryo and eventually drive its elongation. In particular, the gradual re-alignment of F-actins must be synchronized with the development of intracellular forces for the embryo to elongate, which is then further sustained by muscle contraction-triggered plastic deformation of cells. In addition, I will also introduce a microfluidic setup developed in our lab allowing us to impose precisely controlled cyclic deformation on cells and therefore probe their plastic characteristics. Interestingly, we found that significant plastic strain can accumulate rapidly in highly invasive cancer cell lines and circulating tumor cells (CTCs) from late-stage lung cancer patients with a characteristic time of a few seconds. In comparison, very little irreversible deformation was observed in the less invasive cell lines and CTCs from early-stage lung cancer patients, highlighting the potential of using the plastic response of cells as a novel marker in future cancer prognosis and monitoring.