Acoustic metamaterials are artificially designed structured ‘atoms’. Initially, scientists discovered that these meta-atoms can exhibit extraordinary properties beyond those found in natural materials, such as negative density and negative modulus, through localized resonance, which sparked significant interest in the academic community. Subsequently, it was confirmed that these unique narrow-band frequency responses can be extended to broadband impedance designs, leading directly to the emergence of absorption metamaterials and opening up large-scale applications in noise reduction. In recent years, the potential of customizable metamaterials has gradually been realized. We will present our latest works from two complementary perspectives: customized frequencies and spatial non-uniformity, which may open up new applications such as directional emission, stealth cloaking and automotive acoustics.