All members of the HKU community and the general public are welcome to join!
Speaker:Professor John A. Rogers,Louis Simpson and Kimberley Querrey Professor of Materials Science and Engineering, Biomedical Engineering, and Neurological Surgery, Northwestern University, Director, Querrey Simpson Institute for Bioelectronics
Moderator: Dr Lizhi Xu, Associate Professor, Department of Mechanical Engineering, Faculty of Engineering, HKU
Date: 13th December 2023 (Wednesday)
Time: 4:30pm
Mode: Mixed (both face-to-face and online). Seats for on-site participants are limited. A confirmation email will be sent to participants who have successfully registered.
Language: English
Complex, three dimensional (3D) micro/nanostructures in biology provide sophisticated, essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D structures in man-made devices, but existing design options are highly constrained by comparatively primitive capabilities in fabrication and growth. Recent advances in mechanical engineering and materials science provide broad access to diverse, highly engineered classes of 3D architectures, with characteristic dimensions that range from nanometers to centimeters and areas that span square centimeters or more. The approach relies on geometric transformation of preformed two dimensional (2D) precursor micro/nanostructures and/or devices into extended 3D layouts by controlled processes of substrate-induced compressive buckling, where the bonding configurations, thickness distributions and other parameters control the final configurations. This talk reviews the key concepts and focuses on the most recent developments with example applications in areas ranging from mesoscale microfluidic/electronic networks as neural interfaces, to bio-inspired microfliers as environmental sensing platforms.